Evaluation of the Effect of Buccolingual and Apicocoronal Positions of Dental Implants on Stress and Strain in Alveolar Bone by Finite Element Analysis

  • Farhood Massoumi Assistant Professor, Dental Research Center, Research Institute of Dental Sciences, Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Mina Taheri Postgraduate Student, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  • Abolghasem Mohammadi Assistant Professor, Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • Omid Amelirad PhD Student, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Keywords: Dental Implants, Dental Stress Analysis, Mechanical Stress, Finite Element Analysis

Abstract

Objectives: The position of dental implants in the alveolar bone can affect the surrounding bone from biomechanical and biological aspects. The purpose of this study was to evaluate the effect of implant position on stress and strain distribution in the surrounding bone by using finite element analysis (FEA).Materials and Methods: Thirteen computerized models of a 3.8-mm-diameter XiVE implant with the abutment and crown of a mandibular second premolar in a mandibular bone segment were designed. In the reference model, the implant was placed at the center of the alveolar ridge with its crest module located above the alveolar crest. In the other models, the implants were positioned buccally, lingually, coronally or apically by 0.5, 1 or 1.5mm. By using the ANSYS software program, a 100-N load was applied to the buccal cusp parallel to and at a 30-degree angle relative to the longitudinal axis of the fixture. The models were analyzed in terms of the distribution of stress and strain in the bone.Results: The different implant positions induced nonlinear stress and strain changes in the bone. The central, 1.5-mm apical, and 1.5-mm coronal implant positions induced high amounts of stress and strain under off-axial loads.Conclusions: Within the limitations of this study, the results showed that the stress and strain in the bone around the implant undergo small nonlinear changes with buccolingual and apicocoronal shifting of the implant and can be affected by the configuration of the implant in contact with the bone.

Author Biographies

Farhood Massoumi, Assistant Professor, Dental Research Center, Research Institute of Dental Sciences, Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Dental Research Center, Research Institute of Dental Sciences
Omid Amelirad, PhD Student, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
PhD Student, Department of Mechanical Engineering

References

- Moraschini V, Poubel LA, Ferreira VF, Barboza Edos S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015 Mar;44(3):377-88.

- Pjetursson BE, Tan K, Lang NP, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res. 2004 Dec;15(6):625-42.

- Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986 Summer;1(1): 11-25.

- Bidez MW, Misch CE. Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol. 1992;18(3):264-74.

- Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64(3):175-88.

- Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants. 2009 Jan-Feb;24(1):88-95.

- Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008 Dec;100(6):422-31.

- Qian L, Todo M, Matsushita Y, Koyano K. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis. Int J Oral Maxillofac Implants. 2009 Sep-Oct;24(5):877-86.

- Chou HY, Muftu S, Bozkaya D. Combined effects of implant insertion depth and alveolar bone quality on periimplant bone strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. J Prosthet Dent. 2010 Nov;104(5):293-300.

- Chu CM, Hsu JT, Fuh LJ, Huang HL. Biomechanical evaluation of subcrestal placement of dental implants: in vitro and numerical analyses. J Periodontol. 2011 Feb;82(2):302-10.

- Hudieb M, Kasugai S. Biomechanical effect of crestal bone osteoplasty before implant placement: a three-dimensional finite element analysis. Int J Oral Maxillofac Surg. 2011 Feb;40(2):200-6.

- Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001 Jun;85(6):585-98.

- Huang CC, Lan TH, Lee HE, Wang CH. The biomechanical analysis of relative position between implant and alveolar bone: finite element method. J Periodontol. 2011 Mar;82(3):489-96.

- Chang SH, Lin CL, Lin YS, Hsue SS, Huang SR. Biomechanical comparison of a single short and wide implant with monocortical or bicortical engagement in the atrophic posterior maxilla and a long implant in the augmented sinus. Int J Oral Maxillofac Implants. 2012 Nov-Dec;27(6):e102-11.

- Sutpideler M, Eckert SE, Zobitz M, An KN. Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. Int J Oral Maxillofac Implants. 2004 Nov-Dec;19(6):819-25.

- Shimura Y, Sato Y, Kitagawa N, Omori M. Biomechanical effects of offset placement of dental implants in the edentulous posterior mandible. Int J Implant Dent. 2016 Dec;2(1):17.

- Lee EH, Ryu SM, Kim JY, Cho BO, Lee YC, Park YJ, et al. Effects of installation depth on survival of an hydroxyapatite-coated Bicon implant for single-tooth restoration. J Oral Maxillofac Surg. 2010 Jun;68(6):1345-52.

- Saadoun AP, LeGall M, Touati B. Selection and ideal tridimensional implant position for soft tissue aesthetics. Pract Periodontics Aesthet Dent. 1999 Nov-Dec;11(9):1063-72.

- Schwarz F, Hegewald A, Becker J. Impact of implant-abutment connection and positioning of the machined collar/microgap on crestal bone level changes: a systematic review. Clin Oral Implants Res. 2014 Apr;25(4):417-25.

- Sahabi M, Adibrad M, Mirhashemi FS, Habibzadeh S. Biomechanical effects of platform switching in two different implant systems: a three-dimensional finite element analysis. J Dent (Tehran). 2013 May;10(4):338-50.

- Kamposiora P, Papavasiliou G, Bayne SC, Felton DA. Predictions of cement microfracture under crowns using 3D-FEA. J Prosthodont. 2000 Dec;9(4):201-9.

- Kamposiora P, Papavasilious G, Bayne SC, Felton DA. Finite element analysis estimates of cement microfracture under complete veneer crowns. J Prosthet Dent. 1994 May;71(5):435-41.

- Sangeetha A, Padmanabhan TV, Subramaniam R, Ramkumar V. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model. J Pharm Bioallied Sci. 2012 Aug;4(Suppl 2):S384-9.

- Rismanchian M, Askari N, Shafiei S. The effect of placement depth of platform-switched implants on periimplant cortical bone stress: a 3-dimensional finite element analysis. Implant Dent. 2013 Apr;22(2):165-9.

- Satoh T, Maeda Y, Komiyama Y. Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. Int J Oral Maxillofac Implants. 2005 Jul-Aug;20(4):533-9.

- Guan H, van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. Int J Oral Maxillofac Implants. 2009 Sep-Oct;24(5):866-76.

- de Almeida EO, Rocha EP, Freitas AC Jr, Freitas MM Jr. Finite element stress analysis of edentulous mandibles with different bone types supporting multiple-implant superstructures. Int J Oral Maxillofac Implants. 2010 Nov-Dec;25(6):1108-14.

- Veis A, Parissis N, Tsirlis A, Papadeli C, Marinis G, Zogakis A. Evaluation of peri-implant marginal bone loss using modified abutment connections at various crestal level placements. Int J Periodontics Restorative Dent. 2010 Dec;30(6):609-17.

- Barros RR, Novaes AB Jr, Muglia VA, Iezzi G, Piattelli A. Influence of interimplant distances and placement depth on peri-implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: a histomorphometric study in dogs. Clin Oral Implants Res. 2010 Apr 01;21(4):371-8.

- Leon J, Carrascosa A, Rodriguez X, Ruiz-Magaz V, Pascual A, Nart J. Finite element analysis relative to the crestal position of a 3.0-mm-diameter implant. Int J Periodontics Restorative Dent. 2014 May-Jun;34(3):381-7.

- Konda P, Tarannum SA. Basic principles of finite element method and its applications in orthodontics. J Pharm Biomed Sci. 2012;16(11):1-4.

- Landi L, Manicone PF, Piccinelli S, Raia R. Histologic analysis of a failing three-part dental implant: a human case report. Int J Periodontics Restorative Dent. 2005 Dec;25(6):615-21.

- Nevins M, Nevins ML, Camelo M, Boyesen JL, Kim DM. Human histologic evidence of a connective tissue attachment to a dental implant. Int J Periodontics Restorative Dent. 2008 Apr;28(2):111-21.

- Weng D, Nagata MJ, Bell M, Bosco AF, de Melo LG, Richter EJ. Influence of microgap location and configuration on the periimplant bone morphology in submerged implants. An experimental study in dogs. Clin Oral Implants Res. 2008 Nov;19(11):1141-7.

- Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999 Jun;57(6):700-6.

- Misch CE. Bone density: a key determinant for treatment planning, in Contemporary Implant Dentistry. St Louis, MO: Mosby Elsevier, 2008:130-46.

- Alikhasi M, Siadat H, Geramy A, Hassan-Ahangari A. Stress distribution around maxillary anterior implants as a factor of labial bone thickness and occlusal load angles: a 3-dimensional finite element analysis. J Oral Implantol. 2014 Feb;40(1):37-41.

- I-Chiang C, Shyh-Yuan L, Ming-Chang W, Sun CW, Jiang CP. Finite element modelling of implant designs and cortical bone thickness on stress distribution in maxillary type IV bone. Comput Methods Biomech Biomed Engin. 2014 Apr;17(5):516-26.

- Alonso-Gonzalez R, Aloy-Prosper A, Penarrocha-Oltra D, Penarrocha-Diago MA, Penarrocha-Diago M. Marginal bone loss in relation to platform switching implant insertion depth: An update. J Clin Exp Dent. 2012 Jul;4(3):e173-9.

- Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007 Mar-Apr;22(2): 301-9.

- Rodriguez AM, Aquilino SA, Lund PS. Cantilever and implant biomechanics: a review of the literature. Part 1. J Prosthodont. 1994 Mar;3(1):41-6.

- Rodriguez AM, Aquilino SA, Lund PS. Cantilever and implant biomechanics: a review of the literature, Part 2. J Prosthodont. 1994 Jun;3(2):114-8.

- Siadat H, Hashemzadeh S, Geramy A, Bassir SH, Alikhasi M. Effect of Offset Implant Placement on the Stress Distribution Around a Dental Implant: A Three-Dimensional Finite Element Analysis. J Oral Implantol. 2015 Dec;41(6):646-51.

- Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech. 1996 Jan;29(1): 69-79.

Published
2018-01-06
How to Cite
1.
Massoumi F, Taheri M, Mohammadi A, Amelirad O. Evaluation of the Effect of Buccolingual and Apicocoronal Positions of Dental Implants on Stress and Strain in Alveolar Bone by Finite Element Analysis. jdt. 15(1):10-9.
Section
Original Article(s)