Adherence of Streptococcus Mutans to Microhybrid and Nanohybrid Resin Composites and Dental Amalgam: An In Vitro Study

  • Fariba Motevasselian Assistant Professor, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Restorative and Aesthetic Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  • Ensieh Zibafar Assistant Professor, Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
  • Esmail Yassini Professor, Department of Restorative and Aesthetic Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  • Mansoreh Mirzaei Associate Professor, Department of Restorative and Aesthetic Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  • Naser Pourmirhoseni Dentist, Private Practice, Tehran, Iran
Bacterial Adhesion, Dental Amalgam, Dental Restoration, Resin Composite, Streptococcus Mutans


Objectives: Streptococcus mutans (S. mutans) is a cariogenic microorganism. The restorative materials which harbor a biofilm with high levels of S. mutans can accelerate the occurrence of dental caries. The purpose of this study was to evaluate the influence of different restorative materials on S. mutans colonization in a simple in-vitro biofilm formation model.

Materials and Methods: Thirteen discs of each material (nanohybrid resin composite, microhybrid resin composite, and amalgam) were prepared, polished, and sterilized in a gamma radiation chamber. The saliva-free specimens were exposed to the S. mutans bacterial suspension (0.5 McFarland) and were incubated for 4 hours. Afterwards, the specimens were rinsed and sonicated in normal saline. 10µl of the obtained suspension was cultured in a sterile blood agar medium. After 24 hours, the number of colony forming units (CFU) of S. mutans was counted. A sterility test control was considered for each group of materials. The data were analyzed by one-way ANOVA at 5% significance level.

Results: The means and standard deviations of the logarithmic values of the colonies on the surfaces of amalgam, microhybrid, and nanohybrid resin composites were equal to 3.76±0.64, 3.91±0.52 and 3.34±0.74, respectively.

Conclusions: There were no significant differences between the restorative materials in terms of S. mutans adhesion rate. The evaluated resin composites showed comparable numbers of CFUs, which could imply the importance of the polishing procedures.


- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010 Sep;8(9):623-33.

- Mjor IA, Moorhead JE, Dahl JE. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J. 2000 Dec;50(6):361-6.

- Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontol. 2000. 2011 Feb;55(1):16-35.

- Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005 Aug;33(4):248-55.

- Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, et al. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials. 2004 Aug;25(18):4457-63.

- Kuper NK, van de Sande FH, Opdam NJ, Bronkhorst EM, de Soet JJ, Cenci MS, et al. Restoration materials and secondary caries using an in vitro biofilm model. J Dent Res. 2015 Jan;94(1):62-8.

- Shenoy A. Is it the end of the road for dental amalgam? A critical review. J Conserv Dent. 2008 Jul;11(3):99-107.

- Mitchell RJ, Koike M, Okabe T. Posterior amalgam restorations--usage, regulation, and longevity. Dent Clin North Am. 2007 Jul;51(3):573-89.

- Ferracane JL. Resin composite--state of the art. Dent Mater. 2011 Jan;27(1):29-38.

- Kaizer MR, de Oliveira-Ogliari A, Cenci MS, Opdam NJ, Moraes RR. Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies. Dent Mater. 2014 Apr;30(4):e41-78.

- Goncalves F, Kawano Y, Braga RR. Contraction stress related to composite inorganic content. Dent Mater. 2010 Jul;26(7):704-9.

- Da Rosa Rodolpho PA, Donassollo TA, Cenci MS, Loguercio AD, Moraes RR, Bronkhorst EM, et al. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent Mater. 2011 Oct;27(10):955-63.

- de Moraes RR, Goncalves Lde S, Lancellotti AC, Consani S, Correr-Sobrinho L, Sinhoreti MA. Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Oper Dent. 2009 Sep-Oct;34(5):551-7.

- Swift EJ. Nanocomposites. J Esthet Restor Dent. 2005 Jan;17(1):3-4.

- FiltekTM Z250 XT Nano Hybrid Universal

Restorative Technical Data Sheet. Available at: August 14, 2017.

- Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010 Jul;89(7):657-65.

- Azam MT, Khan AS, Muzzafar D, Faryal R, Siddiqi SA, Ahmad R, et al. Structural, surface, in vitro bacterial adhesion and biofilm formation analysis of three dental restorative composites. Materials (Basel). 2015 Jun;8(6):3221-37.

- de Fucio SB, Puppin-Rontani RM, de Carvalho FG, Mattos-Graner Rde O, Correr-Sobrinho L, Garcia-Godoy F. Analyses of biofilms accumulated on dental restorative materials. Am J Dent. 2009 Jun;22(3):131-6.

- Derchi G, Vano M, Barone A, Covani U, Diaspro A, Salerno M. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm. J Prosthet Dent. 2017 May;117(5):669-76.

- Cavalcante LM, Masouras K, Watts DC, Pimenta LA, Silikas N. Effect of nanofillers' size on surface properties after toothbrush abrasion. Am J Dent. 2009 Feb;22(1):60-4.

- Mei L, Busscher HJ, van der Mei HC, Ren Y. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater. 2011 Aug;27(8):770-8.

- Ikeda M, Matin K, Nikaido T, Foxton RM, Tagami J. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites. Dent Mater J. 2007 Nov;26(6):915-23.

- Darrene LN, Cecile B. Experimental models of oral biofilms developed on inert substrates: a review of the literature. BioMed Res Int. 2016;2016:7461047.

- Salli KM, Ouwehand AC. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol. 2015 Mar 3;7:26149.

- Ionescu A, Brambilla E, Wastl DS, Giessibl FJ, Cazzaniga G, Schneider-Feyrer S, et al. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites. J Mater Sci Mater Med. 2015 Jan;26(1):5372.

- Lima EM, Koo H, Vacca Smith AM, Rosalen PL, Del Bel Cury AA. Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. Clin Oral Implants Res. 2008 Aug;19(8):780-5.

- Pereira CA, Eskelson E, Cavalli V, Liporoni PC, Jorge AO, do Rego MA. Streptococcus mutans biofilm adhesion on composite resin surfaces after different finishing and polishing techniques. Oper Dent. 2011 May-Jun;36(3):311-7.

- Auschill TM, Arweiler NB, Brecx M, Reich E, Sculean A, Netuschil L. The effect of dental restorative materials on dental biofilm. Eur J Oral Sci. 2002 Feb;110(1):48-53.

- Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006 Oct;17 (Suppl 2):68-81.

- Song F, Koo H, Ren D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J Dent Res. 2015 Aug;94(8):1027-34.

- Suljak JP, Reid G, Wood SM, McConnell RJ, van der Mei HC, Busscher HJ. Bacterial adhesion to dental amalgam and three resin composites. J Dent. 1995 Jun;23(3):171-6.

- Padovani GC, Fucio SB, Ambrosano GM, Correr-Sobrinho L, Puppin-Rontani RM. In situ bacterial accumulation on dental restorative materials. CLSM/ COMSTAT analysis. Am J Dent. 2015 Feb;28(1):3-8.

- Zhang N, Melo MAS, Weir MD, Reynolds MA, Bai Y, Xu HHK. Do dental resin composites accumulate more oral biofilms and plaque than amalgam and glass ionomer materials? Materials (Basel). 2016 Nov;9(11):888.

- Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007 Mar;35(3):201-6.

- Lyttle HA, Bowden GH. The level of mercury in human dental plaque and interaction in vitro between biofilms of Streptococcus mutans and dental amalgam. J Dent Res. 1993 Sep;72(9):1320-4.

- Mueller RF, Characklis WG, Jones WL, Sears JT. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis. Biotechnol Bioeng. 1992 May;39(11):1161-70.

- Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997 Jul;13(4):258-69.

- Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S. Influence of surface properties of resin-

based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci. 2012 Oct;120(5):458-65.

- Hansel C, Leyhausen G, Mai UE, Geurtsen W. Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res. 1998 Jan;77(1):60-7.

How to Cite
Motevasselian F, Zibafar E, Yassini E, Mirzaei M, Pourmirhoseni N. Adherence of Streptococcus Mutans to Microhybrid and Nanohybrid Resin Composites and Dental Amalgam: An In Vitro Study. Front Dent. 14(6):337-343.
Original Article